
Applying Data Analysis  
to  
Software Development 

Laurence Chen | CEO @ REPLWARE 
https://replware.dev 

About Me 

● Clojure community organizer 
● IT Consultant, speaker, writer 
● https://leanpub.com/errors_to_innovation/ | 從錯誤到創新 

https://leanpub.com/errors_to_innovation/

Agenda

● Why do you care? 

● DORA metrics 

● Unplanned Work Ratio 

● Idea Flow Ratio 

 

Why do you care?  

● We, developers, want to refactor.  
● Management people want features. 

DORA metrics - DevOps KPI 

● Deployment Frequency 

● Lead Time for changes: The amount of time it takes a

commit to get into production 

● Change Failure Rate 

● Mean Time to Restore 

 

 

 

DORA metrics - Benchmark 

How to improve DORA metrics 

● Automation of testing and CI/CD 

● Break the changes down into small iterations. 

● Observability in production environment. 

Discussion of DORA metrics 

● Measure the global outcome. 

 => Every metric is directly related to the release. 

● Goodhart’s Law: “When a measure becomes a target, it
ceases to be a good measure.” 

=> Paired Metrics 

=> Two for velocity, and two for stability.  

● But, how about the tasks happening before the commits? 

Unplanned Work Ratio 

● Unplanned work is anything you didn’t anticipate or plan
for, such as bug fixes, service interruptions, or flawed
software designs causing excess rework.  
 

● If it is more than 15%, then you have troubles.  

 

Unplanned Work Ratio Benchmark 

● Highest performers: < 5% unplanned work  

● Lowest performers: > 50% unplanned work 

How to improve unplanned work ratio? 

● Your code? But where? 

● How about our work flow? How to measure it? 

 

Code Scene - Where to refactor in your code? 

● Your Code as a Crime Scene - by Adam Tornhill

Idea flow 

● Idea Flow - How to Measure the PAIN in Software
Development - by Janelle Arty Starr 
 

● Optimize the flow instead of optimizing the code. 

How to measure the flow? 

● Editor Plugin 

Focus on improving the idea flow 

● Before 

 

 

● After 

The Ten Pains of Software Development 

Four Most Important Pains 

● Modeling Pain (Task Complexity) 
○ When it’s difficult to build a conceptual model of how the software

works because the code is difficult to scan.  
● Experiment Pain (Task Complexity) 

○ When it’s difficult to setup experiments, run experiments, or figure out
what’s going on, it’s experiment pain. 

● Lack of Familiarity Pain 
○ Familiarity changes the perceived complexity of the task. 
○ Don’t be fooled. 

● Disruption Pain 

In Conclusion 
● Do high ROI (return on investment) task. 

● Talk the walk and walk the talk. 

● Visibility and Control 

Q & A 

